TAKING ACCOUNT OF CYLINDRICAL SHAPE IN THE THEORY
OF AN INDUCTIVE MHD PROPULSION UNIT WITH A FREE FIELD

T. A, Pupykina and V. I. Yakovlev UDC 538.4

Inductive MHD propulsion units have been studied in [1, 2]. In [2] it was shown that the integral energy
characteristics of a real MHD propulsion unit of finite dimensions differ qualitatively from the characteristics
[1] obtained on an ideal model of it with an infinitely long cylindrical inductor, which creates a traveling wave
with fixed frequency and phase velocity. The physical reason for this difference is that the source of the elec-
tromagnetic fields (the inductor) of a propulsion unit of finite dimensions creates a spectrum of waves which
possess various phase velocities (and wave numbers), including waves with arbitrarily large velocities, The
contribution made by the electromagnetic fields associated with these waves to the integral quantities (the
thrust and the necessary electrical power) of the propulsion unit determines the peculiarity observed [2] in the
behavior of the investigated characteristies. In this connection, there is one circumstance which may cast
doubt on the usability of the qualitative results of [2], obtained on a model of a flat plate, to real devices which
may be regarded as axially symmetric. The reason is the following: in the case of a flat plate the fields Eg, Hg
in the liquid, which correspond to the spectral components of the current in the source, are proportional to the
spectral component for all k and extend to distances ~1/k from the plane of the plate. In an axially symmetric
device the z~component of the field H (which determines the energy loss), for k ~ 0, is essentially enclosed
within the source (within the "solenoid") and is small in the surrounding liquid; therefore in this case the con-
tribution made by the neighborhood of the point k = 0 to the integral energy characteristics must be substan-
tially lower than in the case of a flat plate, and this fact may in principle lead to a qualitative difference be-
tween the results of the present study and the results of [2]. Accordingly, it is naturally of interest to in-
vestigate the energy characteristics with a more realistic axially symmetric model.

1. This study is devoted to the investigation of the energy characteristics of an axially symmetric in-
ductive MHD propulsion unit with a free field (Fig, 1). It is assumed that the propulsion section consists of
cylinder of radius R and length a, and attached to the propulsion section on each side is a cylindrical segment
with a nonconducting surface, whose length is not less than the radius R. Under these conditions, we can cal-
culate the electromagnetic quantities by using a scheme with an infinite eylinder, part of which (of length a)
is the propulsion unit, while the rest of its surface is made of a nonconductive material.

The source creating the electromagnetic field in the surrounding liquid (the inductor) creates surface
currents which are given in the form of a traveling wave; these are distributed along the surface of the cyl-
inder within the limits of the propulsion section. Using the dimensionless cylindrical coordinates r, «, z (as
our scale of length we take the dimension a of the propulsion section), we can state the distribution of the cur-
rent as follows:

ig(r, 2, 1) = Re Jyi, (3) ei("’ozm‘“ot), 1.1
L [[io(z) for |z|<1/27
BE=1 for 212,

where J; is the maximum current density; ig(m) is a function characterizing the distribution of current ampli~
tude over the propulsion section, with 1i;(z)lmax = 1; the dimensionless wave number k, = @7/Aa = n7 deter-
mines the number n of half-waves A/2 of the current (1.1) that fit into the propulsion segment, The actual cur-
rent distribution (1.1} is a superposition of an infinite set of waves propagated along the z axis. To see this, we
note that, using the Fourier transform
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S iy (z) e—thedg,
-1/8

()= | i(R)emdk, i(k)=o=
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we can represent the distribution (1.1) in the form
ia(r, 2, ) =ReJy | i(k — ko) eihzdk e~ 00", (1.2)

From this it can be seen that the components of the wave have a fixed frequency w, and different phase veloci-
ties
o 0 Q)
Up= 1 pT,
which vary from —« to ©, Here the subscript 0 denotes a fixed phase velocity
vf, = 0,0/k,
determined by the dimensional frequency w, and the number k.

2. The distribution of the electric field E and the magnetic field H in the liquid (region 1) and within the
cylinder (region 2) can be found, as in [2], on the assumption that the parameter of the MHD interaction is
small; in Maxwell's equations, we use as the field of velocities of the liquid (with respect to the propulsion
unit) v = uge,, where uy is the velocity of motion of the body under consideration with respect to the liquid (see
Fig. 1),

The vector potential describing the fields E, H in the system under consideration will naturally be sought
as the sum of waves similar to (1.2), i.e., in the form

B
a

As =2 | 4y, (r, By eiedk o™ e 2.1)
Then the equations for the dimensionless Fourier components Ay, (r, k) (the subscripts indicate the number of
the region), which follow from Maxwell's equations, can be reduced by using the independent variables & , =

By or [y =ivk® — iRm (ko — ks), py = il kl] to the Bessel equation

a4, , n 1 d4p,
g}, 2 981
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The solutions possessing the necessary properties for r = 0 and r = = have the form
Ay(ry By = CHY (r VI — iR (By—ks)), Ay (ry k) = CuI ([ R17). 2.2)

1 I :
Here H1( ), I, are the Hankel function and the modified Bessel function, the expression Vi — iRy, (k, — ks) is
taken to be a value with a positive real part, and the parameters (s is the slippage, Ry is the magnetic Rey-
nolds number) are equal to

s = uy/th, R = 4novpa/c®.

The arbitrary constants Cy, C, are determined from the conditions at the boundary r = R/a = r;, which can
be written in the form
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o
-~1



(ddy/dr — dAy/dr) Ir:trn = dni (R k), Aglh, rg) = ALk ).

3. The integral quantities — the thrust created by the propulsion unit and the necessary elecirical pow-
er — can be calculated as in [2], and the result for time-averaged quantities (over the period 27/w) has the
form

Hga 4 ; 9 mOHgaz 0
{Fy)=—2aR Py B Fy(kg; 7oy By 8)y, (Q> = 2nR ) Ry @y (kgy Tgy Biny 83 (3.1)

ans % 8nz 2 .
Fy=%0 Vk(D(k)li(k — ko) |2 dk, Ql=;§3; j D (B)| i(k— ko) [2dE;. (3.2)

m -0
— O ), (kLT
@ (k) = Re 1 V1o hs [ :
® Vel B (r) I (1R 7o) — G (yro) Iy (1R b rg) 3.3)
Hy = 2aJ /e (3.4)
The efficiency, defined as the ratio of the useful power |{(Fy) lu, to the power actually used {Q), is equal to
_sh
TR

For comparison, we shall need the results relating to the case ry = », These resulfs can be obtained more
easily not by writing out a general solution valid for arbitrary r; but by directly considering a problem similar
to [2] with the difference that the conductive liquid fills a half-space on one side of the plane of the plate, rather
than the entire space as in [2]. The result is the following: the force and the electrical power per unit length
of the plate are given by Egs. (3.1) if we eliminate the factor 27R from them, and the dimensionless quantities
Fi, Qq are given by Egs. (3.2) if we replace the function & with

i

@, =Re —
S R VR SR, (kh — k)

3.5)

It should be noted that in (3.1), {3.2) the quantity Rgn = Ryys denotes the magnetic Reynolds number, deter-
mined from the velocity u,.

4. In [2] there was a qualitative investigation of the integral quantities similar to (3.2), and it was shown
that the main contribution fo the integrals is made by the neighborhoods of the points k = 0 and k = kg; it is
precisely the effect of the neighborhood of the point k = 0 that causes the differences between the behavior of
an MHD system with finite dimensions and that of an ideal system. Physically the contribution of this neigh-
borhood means the contribution of the component waves which have high velocity (in comparison to v°) and
move both in the positive and in the negative direction. Their contribution to the integral quantities leads to
a decrease in the effectiveness of the system under consideration below the value for the ideal system. It was
" shown that the relative weight of these waves can be decreased by amplitude modulation, leading to a narrow-
ing of the i(k) spectrum, and consequently to a reduction of the amplitudes of the waves which have phase veloc-
ities of large modulus,

In the cylindrical geometry considered here, the contribution of the "fast"™ waves to the required elec-
trical field is much less than in the case of a flat plate. The reason is that the z component of the field H in
the liquid, which determines the radial component of the Poynting vector, is small for small values of k|
[this follows from (2.2), Hz(rg, k)l = @1Jy/c)it-koe, & = (1/2)ri(Rmk,InvRKkp)?], while in the case of a
flat plate the longitudinal component of H is expressed by an analogous formula without the small factor e,
From this it is clear that a reduction of the effectiveness of the propulsion unit resulting from the finiteness
of the dimensions is less in the cylindrical case than in the flat-plate model. Formally this is due to the dif-
ference between the functions @(k) (3.3), @¢4(k) (3.5) in the region k = 0, The function ®4(kj has in this region
a sharp maximum with width Ak ~ VRpk,y, where €4(0) = 1/vV2RpKk,. In the case of the function (k) this max-
imum is rather blurred (width ~7 when r{ < 1), and the quantity £ (0) itself is small in comparison with &4(0)
[this can be seen from the estimate $(0) = —r}(Rmk,/4) In (r;VRypky), which holds for ryVRpky < 11,

Nevertheless, the conclusion drawn in [2] that a system with a constant current amplitude along the pro-
pulsion section has low effectiveness remains valid. Therefore, except for one example, we shall not give the
results here, The assumption that the use of amplitude modulation is suitable from the energy point of view
also remains valid.

Before turning to numerical results, we shall show that for the values of k; we are interested in, the
dimensionless quantities F,(kq, ry, Rm, s}, Q (kg rgs Rms ), and n(ky, rg, Rm, s) are actually independent of
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TABLE 1

5 re=0,1 RD,=0,005, ro=0,1 =Y -0,005,
ke . 1o==00 Ro a0
[Fot0e ] m Fy-108 n F,-10 I TN
x| 306 0077 | 157,46 |0,002 n | —0,336 | —0,168 [ 13,76 | 0,000
3n | 12,82] 0,158 54,86 | 0,069 3n 0,982 | 0,481 | 6,860,148
5t | 13,42 0,178 23,76 | 0,099 50 0,984 | 0,492 § 2,020,169
DT 1,74 0,487 15,56 | 0,120 | =1 T 0,814 | 0,407 | 1,15 10,205
il o9x | 96| 0,101 11,68 0,436 7 | 9= 0,670 | 0,335 | 0,810,243
“li4x | 850 0,193 11,40 0,447 % ® [ 1dm 0,560 | 0,280 | 0,630,280
1370 | 7,34] 0,195 7.88 10,155 13 0,478 | 0,239 ! 0,520,315
5% | 6,44 0,196 6,78 |0.162 153 0,416 | 0,208 | 0,440,347
a |0,796| 0,089 86,72 {0,001 x| —0,462 | —0,387 | 7,24 ]0,000
31 | 4,92 0,300 2270 10,114 an 0,522 | 0,406 | 4,800,138
5% | 5421 0,349 9,28 | 0,161 5% 0,512 1 0,802 | 4,210,437
| 7w | 446 0,368 596 10,200 |Z| Tn 0410 | 0,693 | 0,620,152
M1 9z | 3,76 0,378 A4k 10,2300 | 9n 0,326 | 0,746 | 0,41|0.175
"1z | 3,200 0,38 3,56 0,255 © | 1= 0,266 | 0,779 | 9,300,201
13z | 2,76] 0,388 2,96 | 0,274 13x 0,224 | 08031 0,240,227
150 | 242| 0,390 2,56 10,289 157 0,92 | 0,819 | 0,200,254
n | 0,04] 0,012 32,38 | 0,001 m | —0,564 | —0,640 | 1,87 10,000
3n | 2,28 0,412 11,96 | 0,144 3n 0,470 | 0,235 | 3,3710,124
ol 57 | 2,36 0,504 444 |0488) | 5m 0,142 | 0,400 | 0,57 10,085
S| 7w | 2,021 0,540 276 0,235 <] 7n 0,086 | 0,458 | 0,19 10,084
Lt oox | 1,70] 0,558 202 |02m7| 0| on | 0,050 | o478 0,090,052
in | 1,44{ 0,569 1,60 {0,313 iin 0,032 1 0481 0,05]0,044
13z | 1,%| 0,576 1,33 10,343 13x 0,020 | 0,48 | 0,030,039
157 | 1,09] 0,581 1,14 10,369 15% 0,015 | 0,490 | 0,02)0,03%

Ry (when Ry < 1), and consequently also independent of Rgn. To do this, we shall expand the function @ (k)
in powers of the small parameter Ry; the first nonzero term of this expansion has the form
2

D (k) = Rp®y (), @y (k) =i;-i°,k—,"s—1%(|kiro> (1 {ro [KE (1R 7o) — K3 (1B r) |+ 2K, (1kIro) Ky ([k|r)).  (3.6)
Equations (3.6) are valid for k| » vRyk,, but in the region Ik| £ vRyk, they do not describe the function
® (k) (at the point k = 0 they even have a logarithmic singularity). Therefore it is not permissible in the gen-
eral case to use (3.6) as P (k) in the integrals of (3.2). However, for those fixed values of k, for which we have
local maxima of 1 for the system under consideration, the position of the maximum of the function ¢ (k) (.e.,
the point k =~ 0) coincides with one of the zeros of the function i(k — ky); the presence of the factor litk — k0)|2
makes the integrals of (3.2) insensitive fo errors in the formulation of the function ® (k) in the small interval
k| £ VRyK, and enables us to use (3.6) as our ¥ (k). Consequently we have proved the above proposition.

Now let us turn to the numerical results obtained by using amplitude modulation with iy(z) = cos 7z. In
this case the values of k, which yield local maxima of  are equal to 3, 57, 77, ... (actually they differ
slightly from these values, but the differences are not worth taking into consideration).

The main results of the calculations are shown in the form of a table and graphs. In Fig. 2 1 is shown as
a function of k, for different values of s when ry = 0.25. The actual curves would be nonmonotonic (sawtooth)
curves with local maxima at odd multiples of m, analogous to [2]. Since we are interested in precisely these
regimes with maximum efficiency, the graphs given here are constructed for values of n (shown by dots in the
graphs) calculated only for k, = 7, 37, ..., 157 and are meaningless in the intervals between these values.
Only for the case s = 0.6 is the function n(ky) shown as a broken line constructed by taking account of even
multiples of m, for which 1 takes on minimum values. [These values were calculated from the general for-
mulas (3.2) for R‘}n = 0.005; the stipulation of the value of R(I)Il is necessary, since for these values of k; the
quantity n will depend on Ry,.] Here, for comparison, we have shown by a dashed curve the result for a con-
stant amplitude and shown by a dot-and-dash curve the result for the case ry = =, iy(z) = cos mz, also obtained
for RY, = 0.005, s = 0.6.

From the curves shown it can be seen that the use of amplitude modulation is indeed preferable, that as
ko increases the quantity 7 in the cylindrical geometry reaches its limiting value s much more rapidly than
for ry=%= (see also Table 1), and that the height of the teeth in the graph of n(ky in this geometry is much less
than the corresponding quantity for r, = =, Lastly, the efficiency of the cylindrical system with a constant
amplitude is also higher than in the analogous case of a flat plate. All of these features are due to the above-
mentioned difference between the functions $(k) and ®,(k) in the region k = 0.
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To characterize the effectiveness of the propulsion unit, in addition to the function 1(ky) we must also
give the dimensionless force ¥y, which determines the value of the field required for creating the necessary
thrust. In [2] the quantity ¥, is given as a function of k, for fixed s values. However, it seems more convenient
to show on our graphs the functionn(F,) for fixed values of kg (yielding local maxima of 1), obtained by eliminating
s from the functions n(ky, s), F(ky, s). The results relating to the case r; = 0.25 are shown in Fig. 3, From
this it can be seen that for large values of F; (i.e., when the necessary thrust is attained for relatively small
values of Hy), we obtain small values of efficiency, and here it is most advantageous to use a system with k;, =
3m, As F, decreases, the n values attained increase, and in order to obtain the largest value of 7 we must pass
to larger values of k;. For example, in the interval F; = (0.03-0.06) it is preferable to have k; = 57, in the
interval F; = (0.0015-0.0025) it is preferable to havek,="7n,etc. The curvesgivenhere are characteristic. The
results for other values of the parameters, from which we can construct analogous graphs, are given in Table
1. From the table and the graphs it can be seen that the qualitative peculiarities of a ¢ylindrical MHD propul-
sion unit are analogous to those obtained on a flat-plate model, However, taking account of the cylindrical
shape involves substantial quantitative corrections, which improve the integral energy characteristics, and it
is therefore necessary to take the shape into consideration.

5. A remark should be made concerning the use of the quantity 27Jy/c as the scale H, of magnetic field
intensity in the liquid. At first glance it appears that the "working" component H;. of the magnetic field oufside
the "solenoid" of finite length fed by the currents (1.1) must be small in comparison with H,. Actually, although
such an assumption is valid for a usual solenoid whose current density is constant along its length, it is not
valid for the case under consideration here, in which along the length of the "solenoid" we can fit ky/7 half-
waves of the current (1.1). In Fig. 4 we show the distribution of the amplitude of the field H; at the boundary
r = r, along the cylinder for the case iy(z) = cos mz, RY, = 0.02, 1, = 0.25, s = 0.2, Here the ordinate axis shows
the modulus | hy(z)| of the quantity hy(z), which determines the distribution

2nJ, i 1
—Re i, (z) e

Hr lr=r0 =

[hy(z) is calculated on the basis of (2.1), 2.2)]. It can be seen from the graphs that beginning with k, = 37, the
distribution of | hy(z)| within the limits |z | = 1/2 of the propulsion section is not very different from |i,(z)l,
and thus the quantity (3.4) does in fact characterize the true scale of the field in the liquid. Beyond the limits
of the propulsion segment the field H damps out rapidly, and the larger kg is, the faster the damping takes

place,

6. In conclusion, we shall show by an example how the results given in Fig. 3 can be used. Suppose that
the dimension of the propulsion section is a = 25 m, ry = 0.25, Rgn = 0.005. We calculate the quantity H, re-
quired to create a specified thrust, From (3.1) we have I{Fy )1 = 63.5H%F1 (here the force is given in tons and
H, is given in teslas), Thus, if F; = 0.04, then the required field for creating a thrust, say, of 100 tons is
~6.3 T. As can be seen from Fig. 3, we attain a value of n ~ 0.44 if k, = 57.

Corresponding to the values o = 5-10'" sec™!, @=2.5-10% cm, u, = (9/7) -10° cm/sec (where R}, =
0.005), Hy = 6.3-10* G, p =1 g/cm?® we have a magnetohydrodynamic interaction parameter N = oHja/pc’u,
equal to 0.19. Consequently, the assumption made here that the electromagnetic volumetric vortex forces
have little effect on the field of velocities in the liquid can still be considered valid.
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TRANSFORMER COUPLING OF INDUCTIVE AND RESISTIVE
LOADS TO A MAGNETIC CUMULATION GENERATOR

A, 8. Kravchenko, R. Z. Lyudaev, UDC 538.4:621.31
A, I. Pavlovskii, L. N. Plyashkevich,
and A, M, Shuvalov

Magnetic cumulation (or explosive magnetic) generators are promising as high-power pulsed electrical
energy sources [1-3]. When the load is connected directly into the circuit of the magnetic cumulation genera-
tor (MCG), the latter can operate efficiently only if restrictions are imposed on the inductance and resistance of
the load, whereas in many applications the load parameters substantially exceed the inductance and resistance
of the MCG, and the required time for energy input to the load may differ substantially from the general work-
ing time, One of the ways of matching the MCG parameters to the load is to use a stepup transformer [1].
Some designs of MCG with transformers have been described [3-7], with discussions of the matching of MCG
to resistive and inductive loads., Some applications of transformer MCG in physics research have been dis-
cussed in [8-10].

Here we consider forms of transformer output from MCG to inductive and resistive loads. An electro-
technical model is convenient for engineering calculations on transformer MCG, as supplemented with the
experimental fact that there is an energy-optimal finite inductance for the generator.

1. In the electrotechnical model, the operation of the MCG is described by a series RL circuit with vari-
able inductance L and resistance R, which formally includes all the losses of magnetic flux ¢. Then I = ¢b,/L,
v t
where 1 is the current in the generator and ¢ = exp(— j.—ii dt), while the subscripts 0 and f denote the values of
o
quantities, respectively, at the start and end of the operation of the MCG. If |dL /di| >R, Iincreases, while the
magnetic energy W increases if |dL/dtl > 2R. If Ly —~ 0 when these conditions are met, then If — =, which lacks
physical meaning, and in that case the problem falls outside the framework of the electrotechnical model. In
practice there is some minimum permissible value Lf for each generator.

Figure 1 shows the equivalent electrotechnical scheme for an MCG with a transformer working into a
resistance R} and inductance Lj with switch K closed and constant L, and Ry, which is described by the system
of equations

d(Ly)/dt + Ryl + Lypdly/dt = 0; 1.1)
L.dl/dt + Ryl, + L,dl/dt = 0, (1.2)

where Ly = Lg + Lyt, Lgis the working inductance of the MCG, Ly is the inductance of the primary winding of
the transformer, which includes Lg, the inductance of the current lead from the MCG to the transformer; 1, =
L; + Lot, Lyt is the inductance of the secondary winding in the transformer; Ly = k(L1tL2t)'1/2, Ly is the mu-
tual inductance, k is the transformer coupling coefficient on the basis of Ly, while R, and R, are the circuit
resistances, and R; appears in R,.

If Ry = 0 we have from (1.1) and (1.2) that
Iy = @eDy/Le, I = —11L1,/Ly + IngLao/Ly + Iy,

where

i
. R
Le= Ly —Liy/Ly: Oy = 15, (L, - L3/Ly); e exp (_\\ _Zl— dt);

0 e
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